High-Latitude Climate Change Experiments: Model uncertainties, needed improvements, and limitations

Peter Thornton, Oak Ridge National Laboratory
Xiaoying Shi, Jiafu Mao, CCSM Biogeochemistry and Land Model Working Groups

Support: DOE Office of Science, BER
Modeling priorities

- Make the best possible prediction of CO$_2$ and other greenhouse gas concentrations on decadal and century timescales.
- Include best possible representation of processes connecting ecosystems and climate.
- Challenge models against observations and experimental results.
- Provide testable hypotheses to guide observation and experimentation.
Modeling uncertainties
(short list)

• Physical climate – ecosystem feedbacks
• Climate – biogeochemistry feedbacks
• Carbon – nutrient interactions
• Carbon – nutrient – water interactions
• CH_4 dynamics
• Distribution of organic matter and biological activity with depth
 – temperature, water, oxygen saturation, pH, other controls…
• Controls on pre-industrial distribution of organic matter
Model results: 1850-present

• Fully-coupled simulation with CCSM4, including prognostic carbon cycle and land C-N dynamics.
• Focus on Alaskan arctic and boreal forest zones
 – Temperature and precipitation
 – Radiation and energy budgets
 – Ecosystem structure and function
Some global results from coupled simulation…

Model **overestimates** present-day CO_2 concentration by ~ 20 ppmv.

Model **accurately** predicts recent rate of warming (~ 0.7 K since 1980).
Some global results from coupled simulation...

Some evidence of recent acceleration of hydrological cycle

Higher CO₂, warmer temperatures, increased water availability: higher GPP
Some global results from coupled simulation…

Increased temperature leads to faster N cycling…
…but increased CO$_2$ still leads to an increase in relative N-limitation
Some global results from coupled simulation...

In spite of increased productivity, total vegetation C stocks declined due to LU/LCC.

Increasing stocks in soil C, but total global estimates much lower than obs: missing permafrost soil C dynamics.
Some global results from coupled simulation…

Low soil C at high latitudes… but better than we’ve done with this model in the past.
Highlighted regions

arctic

boreal
Temperature and precipitation

AK arctic
- ~2.0 K increase since 1980, limited impact on snow depth

AK boreal
- ~2.0 K increase since 1980, noticeable recent impact on snow depth
Radiation budget

AK arctic

Increase in net radiation, decrease in albedo

Alaskan Arctic (66.5-72N, 170-140W)

AK boreal

Increase in net radiation, decrease in albedo

Alaska (59-66.5N, 170-140W)
Ecosystem structure and function

AK arctic

Alaskan Arctic (66.5-72N, 170-140W)

Increased productivity, LAI, sink strength

AK boreal

Alaska (59-66.5N, 170-140W)

Increased productivity, LAI, sink strength
Modeling uncertainties
(short list)

- Physical climate – ecosystem feedbacks
- Climate – biogeochemistry feedbacks
- Carbon – nutrient interactions
- Carbon – nutrient – water interactions
- CH$_4$ dynamics
- Distribution of organic matter and biological activity with depth
 - temperature, water, oxygen saturation, pH, other controls…
- Controls on pre-industrial distribution of organic matter